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Abstract
Shape instability occurring in a thin plate (membrane) made of a soft magnetoelastic material
under a uniform magnetic field is predicted and analysed. The instability onset is shown to be
similar to the second-order transition; the dependence of the threshold field on the magnetic
and geometric parameters of the membrane is derived analytically; the membrane shapes
(domes) are evaluated with the aid of numerical simulation. The theory proposed is in general
agreement with experiments performed on a siloxane rubber/iron carbonyl composite.

Soft magnetic elastomers (SMEs) are weakly linked high-
elasticity matrices filled with magnetic particles of micrometre
or submicrometre size. A remarkable functional property of
these materials is the giant magnetic strain effect reaching
tens of per cent [1–6]. Due to this, SMEs are envisaged
for many applications [4, 5, 7, 8]. Magnetic stresses exerted
on the dispersed particles and transferred via them to the
matrix, (i) in a uniform field tend to stretch the body in the
direction of the field and (ii) in a non-uniform field crave
to move and stretch it in the direction of the maximal field
intensity. This tendency is opposed by elasticity that strives
to preserve the initial shape of the body. However, due to
SME softness, a magnetized sample achieves the state of the
minimal free energy via substantial configuration changes, i.e.
giant magnetostriction.

The magnetic interactions, which induce strain of SMEs,
have a dipole–dipole origin and thus are long ranged. As a
result, the observed manifestations of the magnetostriction
effect depend importantly on the sample shape and on the
orientation of the sample with respect to the magnetizing field.
In papers [9–12] we have analysed the magnetic striction of
SME spheres, spheroids and spherical capsules. The subject
of this work is the behaviour of a thin flat plate (membrane)
fixed along its rim and magnetized by a uniform magnetic field
H0 normal to its surface.

When considering possible deformations of the mem-
brane, we will ignore the azimuthal perturbations thus assum-

ing that the rotational symmetry with respect to the geometric
axis always holds. Meanwhile, we note that the condition of
axial rotary invariance is insensitive to the existence or not of
a plane of symmetry normal to the axis. In other words, under
the symmetry restriction imposed the membrane may either
remain flat or form some concentric pattern(s). It is reason-
able to surmise that under the field a transition from a plane
to a dome-like shape takes place. Indeed, in the initial state
the membrane surface is perpendicular to the field that is quite
unfavourable from the magnetostatic viewpoint. Provided the
‘energy fee’ for producing extra surface area is low enough,
the membrane might strive to bulge or to develop a set of ra-
dial folds. In such patterns the sample surface is inclined to
the field under more favourable angles than π/2, thus yield-
ing diminution of the magnetic energy. A similar behaviour,
which obeys the soft instability scenario, is well known for
thin layers of magnetic fluids [13].

In a membrane that is fixed over its rim, the spectrum
of out-of-plane deformations is discrete, and the mode of
the lowest energy corresponds to a simple bulging: the
formation of a dome. Assume that the membrane is positioned
vertically and a uniform field H0 is horizontal; according
to our experimental evidence this practically excludes the
gravity effect. For this scheme the above-given considerations
predict that the rightward or leftward domes would be equally
probable, a situation that closely resembles the occurrence of
clockwise/counter-clockwise turns of the liquid crystal director
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in the magnetic Friedericksz transition [14]. Degeneration of
such a kind entails with necessity that the transition takes place
at some finite threshold, i.e. the membrane changes its shape
only when the field attains some finite value H0c.

To obtain a quantitative estimate for this critical field,
we set a cylindrical coordinate framework in the middle
plane of the membrane in its flat state and denote by ζ the
perturbations normal to this plane. The deflection energy of a
thin incompressible round plate of diameter D and thickness
h may be taken directly from elasticity theory [15]:

δUelast ∼ Eh3
∫ D/2

0

[
ζ ′′(ρ)

]2
ρ dρ; (1)

here primes denote the derivatives with respect to the radial
variable ρ. On the other hand, the magnetostatic energy of the
plate reduces locally with the increase in the angle α between
H0 and the normal to the membrane, so that δUmagn ∝ −α2.
Taking into account that for small deflections α = ζ ′, the
magnetic energy increment is written as

δUmagn ∼ −µ0h [M(H)]2
∫ D/2

0
(ζ ′)2ρ dρ, (2)

where H is the magnetic field inside the membrane, M(H) the
magnetization of a magnetically soft SME and µ0 the magnetic
constant. Thence, the total energy increment for a weakly
deformed membrane is

δU ∼ h

∫ D/2

0

(
Eh2ζ ′′2 − µ0M

2ζ ′2) ρ dρ. (3)

We introduce surface perturbations of the form of a
cylindrical wave ζ = ζ0 cos(πnρ/D), where n is an odd
integer. Substituting this in (3) and integrating over the radius,
one gets

δU ∼ [
E(πnh/D)2 − µ0M

2
]
(πnζ0)

2 h. (4)

When the expression in square brackets turns negative, a flat
membrane becomes unstable. As seen, it occurs at a finite
field strength. The minimal value Hc of the critical internal
field corresponds to n = 1; this means that at the threshold the
magnetization attains the value M(Hc) = (πh/D)

√
E/µ0.

Assuming that the material is linearly magnetizable (M =
χH ) and setting the demagnetizing coefficient in the plane of
the membrane equal to zero so that H = H0/(1 + χ), one gets
for the applied (external) field strength the estimate

H0c � π(1 + χ) h
√

E

χD
√

µ0
. (5)

Note that the dependence rendered by (5) complies with
intuition: H0c goes down with the increase in the membrane
diameter and magnetic susceptibility while it grows with the
membrane thickness and the elastic modulus.

For a consistent evaluation of the magnetic strains in
a SME membrane both below and above the threshold, we
employ a non-linear continuum model developed in [10]. The
basic equations and boundary conditions are written with

  

Figure 1. Dependence of the absolute value of the membrane
central point displacement on the applied field strength; D/h = 20,
magnetic susceptibility χ = 2 (1), 3 (2), 4 (3).

Figure 2. Profile of the axis cross-section of a membrane with
χ = 3 and D/h = 20 in the absence of the field (flat) and for
H0

√
3µ0/E = 0.6.

regard to the actual problem and then a finite-element solution
procedure allowing for finite strains is used; the details of
this treatment are cumbersome but secondary. The results
obtained are exemplified in figure 1, where the curves describe
the dimensionless displacement |�L|/h of the centre of the
membrane from the initial plane. The material parameters
correspond to the samples with the aspect ratio D/h = 20; the
values of the magnetic susceptibility are chosen to be close to
that of a real material. As seen, the onset of bulging occurs
at a finite field strength, which confirms the prediction of the
threshold character of the effect. In figure 2 the mesh patterns
taken from simulations show the axial cross-section of the same
membrane with the susceptibility χ = 3 in a field that is about
three times higher than the corresponding critical value. As
expected, the occurring configuration has a dome-like shape.
Test calculations show that for D/h > 5 the critical field values
rendered by (5) agree very well with the numerical results
on H0c.

For the experiment, a set of thin SME plates was
prepared with thicknesses 1–2 mm and diameters 20–50 mm.
The material is obtained by admixing iron carbonyl powder
(2–5 µm) in a silicone oligomer that is polymerized and
plastisized; see [3, 16, 17] for details. The bulk magnetization
curve of the obtained SME is quasi-linear up to 150 kA m−1;
the susceptibility in the range 0–100 kA m−1 is virtually
constant and equals χ = 2.14. To prepare a sample, a round
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Figure 3. Domes formed by a membrane with D/h = 10; left to
right: H0 = 50, 80 and 110 kA m−1.

membrane of a diameter D is cut from a SME sheet, then
inserted in a matching hole in an organic glass plate of the
same thickness and glued to the latter along the rim. The thus-
prepared cell is installed in the middle of the gap (40 mm wide)
of a laboratory home-made electromagnet, where the plate
with the SME membrane is oriented parallel to the end walls
(diameter 80 mm) of the pole pieces. As the gap is relatively
wide, some non-uniformities of the field are conceivable. This
implies that the samples of the smallest diameter (D = 20 mm)
are the best with regard to the uniformity of the field. We found,
however, that even for the largest samples (D = 50 mm), in
which the bulk ponderomotive forces are undoubtedly present,
they do not have a significant effect on the instability threshold.
We ascribe this fact to their compensation due to the symmetry
of the set-up.

Before each measurement the pole pieces are demagne-
tized in order that the departure field is always H0 = 0; in the
measurement the coil current is controlled with the accuracy
2% and is changed stepwise by 10 kA m−1 with respect to the
field value. For a sample under test the up–down cycle of the
field is run several times, the waiting time at each field value is
30 s, and it is 300 s in control runs. The sample is photographed
from the direction across the gap with a digital camera that
gives the accuracy of spatial measurements of about 0.1 mm.
An example given in figure 3 illustrates the development of the
dome when the field grows above the threshold.

The comparison with the theory is performed for the
membrane of the smallest diameter available: D = 20 mm
and h = 1.9 mm. Except for the geometry dimensions, our
model requires just two material parameters of SME, both
for the field-free state: the Young’s modulus E and magnetic
susceptibility χ . Their numerical values, E = 30 kPa and
χ = 2.14, determined in independent tests were substituted in
our finite-element program. The results of this calculation are
plotted in figure 4 against the properly scaled experimental
ones. Note that the calculation does not incorporate any
adjustable constants.

As seen, with respect to the critical field the difference
between the calculated and measured values is about 15%,

Figure 4. Theory versus experiment; the field dependence of the
dome height for a membrane with D = 20 mm and h = 1.9 mm;
measurement (points) and modelling (solid line); the material
parameters of the sample are χ = 2.14 and E = 30 kPa.

which is fairly good given the simplicity of the model. For
the field dependence of the dome height �L the quantitative
correspondence is poorer. We surmise two main causes for
this. First is the non-uniformity of the field that induces bulk
ponderomotive forces inside the SME sample. This effect is
to a high extent compensated in the subcritical (H0 < H0c)
regime where the sample is yet flat, but as soon as the
membrane begins its left- or rightward bulging (H0 > H0c), the
distribution of ponderomotive forces becomes unsymmetrical
and seemingly affects the deformation. There is another
source of discrepancies between theory and experiment which
we associate with the field-induced anisotropy of the elastic
modulus of the SME that we use; the presence of such
anisotropy is already proven experimentally [17] but is not
yet accounted for in our model.

In summary, a shape instability of a ferroelastic membrane
fixed over its rim is predicted and proven to exist. In
general features, the onset of this magnetomechanical effect
follows the soft instability scenario (second-order transition)
with respect to the field strength. With the aid of analytical
estimations and numerical modelling, the main driving
mechanism of the phenomenon is elucidated and a quantitative
description of a field-induced SME membrane bulging is
obtained. Some important issues, presently missing from the
theory, are noted for further work.
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[2] Zrìnyi M, Barsi L and Büki A 1997 Polym. Gels Netw.
5 415–27

[3] Nikitin L V, Mironova L S, Stepanov G V and Samus A N
2001 Polym. Sci. Ser. A 43 443–50

[4] Farshad M and Benine A 2004 Polym. Test. 23 347–53
[5] Farshad M and Le Roux M 2005 Polym. Test. 24 163–8
[6] Lattermann G and Krekhova M 2006 Macromol.: Rapid

Commun. 27 1373–79

3

http://dx.doi.org/10.1063/1.471564
http://dx.doi.org/10.1016/S0966-7822(97)00010-5
http://dx.doi.org/10.1016/S0142-9418(03)00103-X
http://dx.doi.org/10.1016/j.polymertesting.2004.09.007
http://dx.doi.org/10.1002/marc.200600284


J. Phys. D: Appl. Phys. 41 (2008) 152002 Fast Track Communication

[7] Ramanujan R V and Lao L L 2006 Smart Mater. Struct.
15 952–6

[8] Bonini B, Lenz S, Giorgi R and Baglioni P 2007 Langmuir
23 8681–5

[9] Raikher Y L and Stolbov O V 2000 Tech. Phys. Lett.
26 156–9

[10] Raikher Y L and Stolbov O V 2005 Appl. Mech. Tech. Phys.
46 434–43

[11] Raikher Y L and Stolbov O V 2005 J. Magn. Magn. Mater.
289 62–5

[12] Stolbov O V and Raikher Y L 2006 J. Magn. Magn. Mater.
300 e199–202

[13] Blums E, Cebers A and Mayorov M 1997 Magnetic Fluids
(Berlin–New York: de Gruyter)

[14] de Gennes P 1993 The Physics of Liquid Crystals 2nd edn
(Oxford: Clarendon)

[15] Landau L D and Lifshitz E M 1970 Theory of Elasticity
(Oxfrod: Pergamon)

[16] Abramchuk S S, Kramarenko E Y, Stepanov G V, Nikitin L V,
Filipcsei G, Khokhlov A R and Zrı́nyi M 2007 Polym. Adv.
Technol. 18 883–90

[17] Stepanov G V, Abramchuk S S, Grishin D A, Nikitin L V,
Kramarenko E Y and Khokhlov A R 2007 Polymer
48 488–95

4

http://dx.doi.org/10.1088/0964-1726/15/4/008
http://dx.doi.org/10.1021/la701292d
http://dx.doi.org/10.1134/1.1262774
http://dx.doi.org/10.1007/s10808-005-0094-5
http://dx.doi.org/10.1016/j.jmmm.2004.11.018
http://dx.doi.org/10.1016/j.jmmm.2005.10.079
http://dx.doi.org/10.1002/pat.924
http://dx.doi.org/10.1016/j.polymer.2006.11.044

	 Acknowledgments
	 References

